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Abstract

In this activity report, we overview two open-
source softwares, mptensor [1] and TeNeS [2],
for tensor network methods. The former is a li-
brary for massively parallel computing of tensor
networks. It provides useful functions for tensor
operations which are commonly appeared in ten-
sor network methods. TeNeS, named for “Tensor
Network Solver”, is a solver for two-dimensional
quantum lattice systems based on an infinite ten-
sor network state. TeNeS is originally developed
as pTNS by Tsuyosi Okubo [3] and released under
the support of Project for Advancement of Soft-
ware Usability in Materials Science (PASUMS) of
the Institute for Solid State Physics, the University
of Tokyo [4]. TeNeS can calculate the ground state
wave function for user-defined Hamiltonian and
evaluate physical quantities including the magne-
tization and the correlation functions.

1 Introduction

In strongly correlated quantum many-body
physics, numerical simulation of low-energy
states is quite important for understanding of in-
teresting phenomena including high-temperature
superconductivity, quantum spin liquid, topolog-
ical nature, etc. To attack these problems, many
computational approaches are proposed. The
exact diagonalization method (ED) provides the
exact ground state for small systems [5]. However,
exponentially divergence of its computational
cost and memory usage tightly limits the size
of systems. The quantum Monte Carlo method

(QMC) also can calculate the exact results within
statistical errors, but the negative sign problem
occurs in the frustrated systems [6]. The vari-
ational Monte Carlo method (VMC) is another
Monte Carlo method based on the variational prin-
ciple [7]. Variational parameters are optimized
to minimize the energy and the resulted wave
function is expected to approximate the ground
state well. The expectation value of physical
quantities is estimated by using the Monte Carlo
sampling. Results of VMC are biased by choice of
the variational wave function ansatz. The density
matrix renormalization group method (DMRG)
is a quite accurate method for one-dimensional
systems [8, 9].

Recently, tensor network methods are proposed
as a powerful tool [10–16]. DMRG can be
viewed as a variational method based on a one-
dimensional tensor network, i.e., the matrix prod-
uct state (MPS) [17]. Its higher-dimensional gen-
eralization including the projected entangled pair
state (PEPS) is quite successful [18–20]. In classi-
cal systems, the partition function can be expressed
as tensor networks [21, 22]. The physical proper-
ties of the systems can be obtained by the contrac-
tion of tensor networks.

Information compression based on the singular
value decomposition is a key idea of tensor net-
work methods in order to avoid exponentially di-
vergence of computational cost. Accuracy of ten-
sor network simulations is determined by the size
of tensors. However, computational cost and mem-
ory usage still increase very rapidly as a function
of tensor size. Thus parallel computation of tensor
network methods is unavoidable to approach inter-
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Figure 1: Hierarchical structure of tensor network
calculations. Our softwares, TeNeS and mptensor,
belongs to the top and middle levels. The soft-
wares written in red support parallel computation
on a distributed memory system.

esting phenomena.

Tensor network calculations are classified in hi-
erarchical structure as shown in Fig. 1. The top
level is lattice model solvers of tensor network
methods. iTensor [23] and TenPy [24] are a fa-
mous software for MPS in this level. The for-
mer is written in C++ language but the latter is
a Python package. The middle level provides a
framework for tensor calculations including ten-
sor contraction and tensor decomposition A C++
library, Uni10 [25] and a famous Python pack-
age NumPy [26] are in this level. Recently, a
team of Google released a Python library ”Tensor-
Network” for physics and machine learning [27].
Since almost tensor calculations are written as ma-
trix operations, this level is a kind of wrapper to
a library for linear algebra, which is the bottom
level. The well-known libraries, LAPACK [28] is
located in this level.

As we mentioned before, parallel computation
of tensor network methods is necessary to inves-
tigate interesting physical phenomena within suffi-
cient accuracy. However, the softwares listed in the
previous paragraph are not parallelized. To resolve
this situation, we are developing two softwares,
mptensor [1] and TeNeS [2] (Fig. 2). mptensor is
an open-source C++ library for parallel computa-
tion of tensor networks on a distributed memory

Figure 2: Logo images of mptensor and TeNeS.
The latter represents a shape of a local tensor in
the tensor network state.

system. It provides many tensor operations com-
monly used in tensor network methods. mptensor
uses ScaLAPACK [29] which is a paralell version
of LAPACK, and supports MPI/OpenMP hybrid
parallel computing. On the other hand, TeNeS is a
lattice solve built on mptensor. It can solve quan-
tum many-body problems on a two-dimensional
infinite lattice based on a infinite tensor network
wavefunction. TeNeS originates from pTNS de-
veloped by Tsuyoshi Okubo [3]. The official ver-
sion of TeNeS (v1.0) is released on April 2020 un-
der the support of the support of Project for Ad-
vancement of Software Usability in Materials Sci-
ence (PASUMS) of the Institute for Solid State
Physics, the University of Tokyo [4].

In the next section, we briefly review tensor net-
work methods and introduce graphical representa-
tions of tensor networks. In the third and fourth
sections, we introduce our softwares and show its
performance. The last section is devoted to sum-
mary.

2 Basics of tensor networks

In many-body problems, a huge tensor often ap-
pears naturally. One typical example is a coeffi-
cient in a wave function of a quantum N-body sys-
tem

|ψ〉 =
∑

Ci1i2···iN |i1〉|i2〉 · · · |iN〉, (1)

where |ix〉 denotes a basis states on a site x and
Ci1i2···iN can be regarded as a N-rank tensor. The
number of elements in such a tensor is O(dN) if
each index takes a value from 1 to d. Here d corre-
sponds the degrees of freedom on each site. Since
computational cost grows exponentially with the
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system size N, it is di�cult to treat such a huge
tensor directly.

A tensor network e↵ectively represents a many-
index tensor by decomposing it into small tensors
only with a few indices, like as,

Ci1i2···iN =
X

{k j}
Ti1k1k2T 0i2i3k2k3

T 00i4k3k4k5
· · · . (2)

We introduce new indices k1, k2, · · · , which con-
nect between small tensors. Summation over these
indices is nothing but tensor contraction. Since k j

does not represent any physical degrees of free-
dom, it is called a virtual index. On the other hand,
the original indices in Ci1i2···iN are named the phys-
ical indices. If the dimension of each virtual index
is D and each tensor has z indices, the number of
elements in each tensor is O(Dz). When the num-
ber of tensors in a tensor network is polynomial in
N, tensor network methods reduce exponentially
large computational cost to polynomial order.

In a tensor network, many small tensors con-
nect each other by virtual indices. Its mathematical
expression becomes messy for large networks. A
graphical representation of tensor networks is use-
ful and intuitive. A tensor is represented by an ob-
ject (circle, square, etc.) and its indices is shown
by lines from a tensor. In other words, a tensor
locates on a node of a graph and its indices cor-
respond to edges. Several examples are shown in
Fig. 3(a). Clearly, a scalar has no index, a vector
has only one leg, and a matrix has two legs. By
using terminology of the graph theory, an index of
a tensor is also called as a bond, and the dimension
of index is a bond dimension. A bond connecting
between two tensors indicates tensor contraction
of two tensors. For example, a graphical represen-
tation of matrix multiplication Ci j =

P
k AikBk j is

shown in Fig. 3(b).
Of course, decomposition of a huge tensor into a

tensor network is approximation. Its accuracy de-
pends on the virtual bond dimension D and a shape
of network. As a variational state for the ground
state of the quantum many-body problems, several
kinds of structures are proposed. One of the sim-
plest network is the matrix product state (MPS),
whose wave function is written as a product of ma-

scalar vector matrix

(a)

four-index tensor

(b)

=
BA C

i j i jk

Figure 3: Graphical representation of tensor net-
works. (a) A tensor is represented by a node of
graph and indices of a tensor corresponds to edges.
(b) A graphical representation of matrix multipli-
cation, Ci j =

P
k AikBk j.

trices,

Ci1i2···iN =
X

{k j}
M(1)

i1k1
M(2)

i2k1k2
M(3)

i3k2k3
· · ·M(N)

iNkN�1
. (3)

Note that the three-index matrix M(n)
inkn�1kn

can be
regarded as a matrix when the physical index in
fixed. Its graphical representation is shown in
Fig. 4(a). This form can be easily derived by itera-
tion of the singular value decomposition. The MPS
is appeared in DMRG and achieves great success
in simulations of the one-dimensional gapped sys-
tems [17]. The projected entanglement pair state
(PEPS) [19] is two-dimensional generalization of
MPS (Fig. 4(b)).

Important feature of PEPS is the fact that it satis-
fies the area law for the entanglement entropy [30].
The area law states that the entanglement entropy
in the ground state of a region A is proportional
to |@A|, the boundary area of the region. The
entanglement entropy of a tensor network state
is bounded by the number of bonds which con-
nects a region A and its complement. If we con-
sider an L ⇥ L region, the entanglement entropy
of PEPS clearly scales as O(L), which satisfies
the area law in two-dimensional systems. In criti-
cal (gapless) one-dimensional systems, entangle-
ment entropy logarithmically increases with the
system size. Since entanglement entropy of MPS
is bounded from above by log D, MPS can not rep-
resent entanglement structure of such a system.
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(a) MPS

(b) PEPS (c) MERA

Figure 4: Some structures of tensor network states.
The black (red) line indicates physical (virtual)
bonds. (a) The matrix product state. (b) The pro-
jected entanglement pair state. (c) The multi-scale
entanglement renormalization ansatz.

The multi-scale entanglement renormalization
ansatz (MERA) shown in Fig. 4(c) resolves this
problem by introducing additional dimension [31].
When we split the system into two parts, we need
to cut O(log L) bonds in the MERA wavefunction,
which indicates that upper bound of entanglement
entropy is O(log L) instead of O(1).

Important problems in a tensor network wave-
function for the ground state are how to calculate
expectation values and how to optimize tensor el-
ements based on the variational principle. These
problems are touched in the fourth section.

Another important application is tensor network
representation of the partition function in the sta-
tistical physics. The simplest example is the trans-
fer matrix method for one-dimensional classical
systems, in which the partition function is writ-
ten as a product of transfer matrices. In the
classical Ising chain with the Hamiltonian H =

−J
∑

i S iS i+1, the transfer matrix is given as a 2×2
matrix,

M =



eβJ e−βJ

e−βJ eβJ


 , Mi j = eβJS iS j (4)

where β denotes the inverse temperature and S i

takes ±1.
A generalization of the transfer matrix to higher

dimensional systems is possible. Let us consider
the square lattice tilted by 45 degrees and put a
local tensor on half of plaquettes as shown in Fig.5.
Obviously an index of a tensor corresponds to the

T
Si
Sj

Sk

Sl
Si
Sj

Sk

Sl

=

Figure 5: A tensor network representation of a
classical spin model on the square lattice.

direction of spins. Tensor elements for the Ising
model are written as

Ti jkl = eβJ(S iS j+S jS k+S kS l+S lS i). (5)

Another sophisticated way to obtain a tensor net-
work representation is based on the singular value
decomposition of the bond Boltzmann factor W.
In the Ising model, W is 2 × 2 matrix with Wss′ =

eβJss′ . From the singular value decomposition,
W = UΣV†, we obtain a local tensor as

T̃i jkl =
∑

s

√
σiσ jσkσlUsiUs jV∗skV∗sl, (6)

where σi denotes the singular value of W. In con-
trast to the previous example, a network of T̃ is the
same as the original lattice of the model.

Contraction of the tensor network is a quite im-
portant task of tensor network methods. For quan-
tum systems, it appears in the inner product of two
tensor network states and the expectation value of
physical quantities. In the classical systems, it di-
rectly relates to the partition function. However,
exact contraction is usually impossible because
of exponentially large computational cost. The
tensor renormalization group method (TRG) [32]
provides an efficient contraction scheme, which
is based on the real-space renormalization group
(Fig. 6). Let us consider a tensor network on
the square lattice. A local tensor with four in-
dices is approximated by the product of two three-
index tensors, which are calculated by the trun-
cated singular value decomposition. Then the
coarse-grained tensor is obtained by contraction of
four tensors. This step is regarded as a real-space
renormalization with scaling factor b =

√
2. After
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t times iteration of TRG steps, the trace of tensor,
Z =
P

i, j Ti ji j, corresponds to the partition function
with N = 2t under the periodic boundary condi-
tion. The animation of TRG method is available in
Ref. [33]. Although the computational cost of the
original TRG method is O(D6), we showed that it
can be reduced to O(D5) by using a randomized al-
gorithm for the singular value decomposition [34].

Many derivatives of TRG are proposed as
a more e�cient and accurate method [35–38].
Since the higher-order tensor renormalization
group (HOTRG) [35] can be used in a higher-
dimensional system, it attracts attention also from
computational elementary particle physics. Re-
cently we proposed a calculation method for
higher-order moments of physical quantities based
on HOTRG [39]. We showed that the finite-size
scaling analysis provides critical exponents and
distinguishes the weakly first-order and the con-
tinuous transitions. The TRG method can also be
applicable to systems with open boundaries. The
fixed-point boundary tensor at criticality has the
information of the conformal tower described by
the boundary conformal field theory [40, 41].

3 mptensor

mptensor is a C++ library for parallel computation
of tensor networks and provides tensor operations
used commonly in tensor network methods [1]. Its
target users are researchers who want to parallelize
their codes of tensor network methods. To make it
easy to translate a serial code written with Python
to a parallelized C++ code, interface of mptensor
is as much like as NumPy [26], which is a famous

T

S [3]

S [1]

S [4]

S [2]

S [3]

S [1]

S [4]

S [2]

T ’

Figure 6: Diagrams of the TRG method.

mptensor
Tensor

scalapack::Matrix

External
libraries

lapack::Matrix

ScaLAPACK
pBLAS, BLACS

MPI

LAPACK
BLAS

Index
Shape
Axes

Figure 7: The class structure of mptensor.

Python module of a multi-dimensional array and
is a de-facto standard in the field of machine learn-
ing.

For high-performance computing, mptensor
supports hybrid parallel computing using MPI
and openMP. With MPI, mptensor distributes ten-
sor elements based on a block-cyclic matrix uses
ScaLAPACK, which is a library for linear algebra
on distributed-memory machines [29]. A tensor
is matricized and distributed by the block-cyclic
way. mptensor also supports LAPACK for a sys-
tem without MPI.

3.1 Class structure

mptensor is composed of three classes as shown
in Fig. 7. The Tensor class is a main object
of mptensor, which represents a tensor and cor-
responds to ndarray in NumPy. In the Tensor
class, a tensor is automatically matricized and it
elements are stored in a Matrix object. mptensor
has two kinds of Matrix classes, a wrapper class
of a linear-algebra library. One uses ScaLAPACK
and the other LAPACK, which are separated by
C++ namespace.

The Index class is a short array of non-negative
integers to represent an index of a tensor. The
Shape and Axes classes are just an alias of the
Index class. These classes have a simple con-
structor to mimic a list of Python. The index class
can create the same list by Index(1,2,3) as well
as Python can easily create a list of integer by
[1,2,3], . For C++11, an initializer list {1,2,3}
is also available instead of the index class.

The Tensor class is implemented as a template
class. Its template parameters specify a Matrix
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class and a value type of elements (double or
complex). For examples, a real-valued dis-
tributed tensor is Tensor<scalapack::Matrix,
double> and a complex-valued non-distributed
tensor is Tensor<lapack::Matrix, complex>.
Since all functions for the tensor class accepts any
patterns of template parameters, users can easily
change a type of tensors. In addition, mptensor is
designed to make it easy to support another library
for linear algebra in the future. It is because the
tensor class can accept any matrix class if it satis-
fies necessary interfaces.

3.2 Access to tensor elements

To access an element of a tensor, mptensor pro-
vides two ways. One is to access an element
with an index of a tensor, which we call a global
index. For example, we can get and set an el-
ement of a four-index tensor T by specifying
(i, j, k, l). The other way is to specify a local in-
dex of a one-dimensional array where distributed
elements are stored. In mptensor, a tensor is ma-
tricized like as Ti jkl = M(i j),(kl). The huge ma-
trix M is decomposed into small matrices by us-
ing the two-dimensional block-cyclic distribution
in ScaLAPACK. A small distributed matrix on
each MPI process is flattened and stored as a one-
dimensional array. The local index specifies a po-
sition in this one-dimensional array. In mptensor,
matricization of a tensor is done in the tensor class,
while translation between a index of the global ma-
trix M and a local index is calculated in the matrix
class.

Since tensor elements are distributed on MPI
processors, access by the global index needs to
check which process has an element Ti jkl. On
the other hands, such a check is not necessary
for the local index. Thus access by the lo-
cal index has simpler interface like as usual ar-
ray access, T[i]. We recommend a for-loop
with the local index to access all the elements
of a tensor. Member functions of the tensor
class, global index and local position per-
form translation between the global and local in-
dices. We note that local position also calcu-

lates which process has the element with the given
global index.

3.3 Tensor operations

In mptensor, many tensor operations are already
implemented. Some typical operations are listed
as follows.

• Tensor contraction (tensordot)
• Tensor decomposition

– Singular value decomposition (svd)

– QR decomposition (qr)

– Diagonalization (eigh)

• Linear-equation solver (solve)
• Arithmetic operators (T + T 0, a ⇥ T , etc.)
• Element-wise vector multiplication
• Find minimum and maximum elements

These are su�cient to implement various tensor
network methods including PEPS and TRG.

Tensor contraction is one of the main operation
in tensor network methods. The tensordot func-
tion takes the almost same arguments of that in
Numpy. For example, let us consider the follow-
ing tensor contraction,

Cabc =
X

i, j

Aaib jB jci. (7)

In mptensor, it is written as

C = tensordot(A, B,

Axes(1, 3),

Axes(2, 0));

The third argument indicates that the second and
fourth indices of the first tensor A will be con-
tracted. (Note that array index starts from zero in
C++.) The fourth argument is for the second ten-
sor B. The third index i in B (specified by the first
element in the fourth argument) will be contracted
with the second index of A and the first index j in
B will connects with the fourth index of A. The
resulted tensor C has three indices abc which con-
sists of the non-contracted indices of the first ten-
sor, followed by the non-contracted indices of the
second.
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Another important operation in tensor net-
work methods is the singular value decomposition
(SVD). For SVD of a tensor, we need to specify the
way of matricization. For example, let us consider
the following decomposition,

Ti jkl =
X

a
UikaS a(V†)al j. (8)

To perform this operation in NumPy, a tensor T
is matricized as T(ik),(l j) before SVD. The resulted
singular value vectors are returned as a matrix,
U(ik),a and (V†)a,(l j). Thus we need to reshape from
a matrix to a tensor. mptensor provides a useful
function for SVD of a tensor and the above decom-
position is written in single line as

svd(T, Axes(0, 2), Axes(3, 1),

U, S, VT);

The second and third arguments specify the way
of matricization. The first and third indices of T
become the row index and the others do the col-
umn index. The order of indices specified in the
second and third arguments also determines that of
U and VT . The result of SVD is stored in the last
three arguments. U and VT are an isometric tensor
corresponding to the singular value vectors, while
S is a one-dimensional array and has the singular
values.

The performance of mptensor strongly depends
on that of ScaLAPACK. The tensor contraction is
performed by using the matrix-matrix multiplica-
tion routines (pdgemm and pzgemm). Thus it shows
very high execution e�ciency and parallel e�-
ciency. On the other hand, parallel performance of
SVD becomes worse in many processes as shown
in Fig. 8.

We show the parallel e�ciency of the HOTRG
method implemented by using mptensor (Fig. 9).
Clearly the strong scaling is satisfied for larger
bond dimension D. It is because the heaviest
part of HOTRG is contraction of a tensor network,
which is scaled as O(D7). We note that deviation
from the strong scaling in small bond dimensions
is due to the singular value decomposition which
has O(D6) scaling.
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4 TeNeS

TeNeS is a tensor-network solver for quan-
tum many-body problems on an infinite two-
dimensional lattice [2]. TeNeS can calculate the
ground-state wavefunction for user-defined Hamil-
tonian and evaluate user-defined physical quanti-
ties, including the magnetization and the correla-
tion functions. TeNeS uses TOML [42] as the for-
mat of input files. This is a very simple config-
uration file format, easy to parse into data struc-
tures and also human-readable. The input file of
the main program, tenes, defines simulation pa-
rameters, unit cell information for TNS, observ-
ables, and time-evolution operators. Since it is
rather complicated for beginners, we provide two
helper programs, tenes simple and tenes std,
to generate an input file as similar to HΦ [5] and
mVMC [7]. By using tenes simple, users easily
create an input file of the predefined models and
lattices. TeNeS (v1.0) supports generation of the
input file for the spin-S Hamiltonian

H =
∑

〈i j〉



∑

α=x,y,z
Jαi jS

α
i S α

j + B
(
%S i · %S j

)2



−
∑

i

[
HS z

i + ΓS
x
i − D(S z

i )
2
]

(9)

on the square, triangular or honeycomb lattice. A
more complicated model is also possible by editing
an input file directly.

The variational wave function of TeNeS is rep-
resented by infinite tensor network called an infi-
nite projected entangled paired state (iPEPS) or an
infinite tensor network state (iTNS). Each tensor
has five indices. One corresponds to the physi-
cal degrees of freedom. The others, called virtual
bonds, connect with tensors on the nearest neigh-
bor sites. The bond dimensions of the physical
and virtual bonds are denoted by d and D, respec-
tively. In iTNS, we need to assume a lattice trans-
lational symmetry with a certain period. Figure
10(a) shows a diagram of iTNS with 2 × 2 sub-
lattice structure. We note that TeNeS always uses
a tensor network on the square lattice. Other two-
dimensional lattices including the honeycomb and

(a) (b)

Figure 10: (a) Graphical representation of the
iTNS wavefunction with 2× 2 sublattice structure.
(b) Diagram of the inner product 〈Ψ|Ψ〉, which is
called the double layered tensor network.

triangular lattices is properly mapped to the square
one.

To obtain the expectation value of a physical
quantity in iTNS, we need to calculate tensor net-
works corresponding to 〈Ψ|O|Ψ〉 and 〈Ψ|Ψ〉. The
diagram of 〈Ψ|Ψ〉 is called the double layered ten-
sor network (Fig. 10(b)). To calculate contrac-
tion of this infinite network, TeNeS uses the cor-
ner transfer matrix method (CTMRG) [19,20]. We
focus on a part of the network and the other part
is approximated by the corner transfer matrices
and the edge tensors [43, 44]. These environment
tensors are optimized by absorbing the local ten-
sor until convergence. The accuracy of the envi-
ronment tensors is determined by its bond dimen-
sion χ. Since the bond dimension after contraction
of the physical bond in the double layered tensor
network is D2, we usually take that χ is propor-
tional to D2. The computational cost of CTMRG
is O(D10) or O(D12) depending on the way of the
partial (truncated) SVD in CTMRG.

In order to approximate the ground state by
iTNS, we need to optimize elements of ten-
sors. TeNeS supports the imaginary-time evolution
method based on

|ΨiTNS〉 ( e−τH |Ψ0〉, (10)

where |Ψ0〉 is the initial iTNS. If τ is sufficiently
large, the right hand side converges to the ground
state and then the left hand side is expected to be a
good approximation of the ground state with iTNS
ansatz. TeNeS assumes that the Hamiltonian can
be written as a sum of short range two-body in-
teractions and uses the Suzuki-Trotter decompo-
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Figure 11: Elapsed time of TeNeS simulations
with the virtual bond dimension D = 10. The blue
square denotes elapsed time per step of the full up-
date. The orange circle is tensor contraction for
calculation of the expectation value.

sition. To avoid divergence of the dimension of
virtual bonds, TeNeS supports two kinds of trun-
cation approaches, so-called the full update [46]
and the simple update [47]. The former solves the
optimization problems of the whole network by us-
ing the CTM environment and has higher accuracy
than the latter. Its computational cost is the same as
CTMRG, that is, O(D10) or O(D12). On the other
hand, the simple update considers only a part of
network. Its computational cost is O(D5), which
is much cheaper than the full update. It is known
that the simple update has strong dependence on
the initial value and usually overestimates the mag-
netization. Thus we need to take care of results
obtained by the simple update.

The accuracy of iTNS calculation depends on
the bond dimension D. However, the computa-
tional cost is rapidly increases. Thus parallel com-
putation is necessary to obtain accurate results.
TeNeS supports parallel computation since tensor
operations are done by using mptensor. We show
elapse time of TeNeS in Fig. 11, where we simu-
late the transverse field Ising model on the square
lattice. We use a real-valued iTNS with the vir-
tual bond dimension D = 10 and set χ = D2 for
CTM. Since calculation of the expectation value
is tensor contraction, its parallel efficiency is quite
good. On the other hand, the full update includes
the singular value decomposition. Its performance

is similar to that of SVD in ScaLAPACK (Fig. 8).
We note that elapse time of the simple update per
step is 0.01% of the full update.

5 Summary

In this paper, we have reported recent activities
of developing tensor network softwares, mptensor
and TeNeS. The former is an MPI/OpenMP hy-
brid parallelized tensor operation library. It pro-
vides many tensor operations commonly used in
the tensor network methods and is already used in
the published papers [48, 49]. One of future issues
for mptensor is implementation of quantum num-
ber conserving tensors. If the system has a cer-
tain symmetry, its tensor network representation
has a corresponding non-trivial structure [52]. This
technique not only improves accuracy but also re-
duces computational cost and memory usage be-
cause such a tensor is block-diagonal. Another fu-
ture issue is automatic differentiation, which be-
comes a common tool in a field of machine learn-
ing. Recently, application of automatic differenti-
ation to tensor network methods was proposed and
succeeded to obtain accurate results [53]. Since
it requires huge memory, its parallelization should
become important for large-scale calculation.

TeNeS is an open-source program package for
calculation of two-dimensional quantum states
based on iTNS. An advantage of TeNeS over other
numerical approaches is that it can treat infinite
systems. In this article, we only show the paral-
lel performance of TeNeS because of space lim-
itations. Accuracy of TeNeS simulations will be
appeared elsewhere [50]. We hope that TeNeS
becomes a useful standard tool for a wide range
of researchers who are interested in the strongly-
correlated many-body problems.
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