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In this project, we modified the source code

of the Quantum ESPRESSO (QE) package, a

popular open-source code for studying the elec-

tronic structure of materials with the density

functional theory (DFT).

Before starting the project, we implemented

several simulation techniques to elucidate a mi-

croscopic detail of an electrochemical reaction

and atomic geometry under an electrochemical

environment at the electrode and electrolyte

interface, called the electrochemical interface.

To reduce the calculation time for obtaining

the equilibrium electrolyte distribution, we uti-

lized the classical liquid theory, called the ref-

erence interaction site model (RISM), in a par-

ticular part of the electrolyte region [1]. The

RISM region can describe the electric double

layer near the interface, which includes the ac-

cumulation and depletion of the counter-ions

in the electrolyte when introducing an excess

charge on the electrode surface by applying a

bias voltage. These techniques are made possi-

ble by introducing a grand canonical ensemble

for both electrons on the electrode [2] and ions

in the electrolyte [1] and solving the Poisson

equation of the system under the open bound-

ary condition along the perpendicular direc-

tion of the interface [3]. We call this hybrid

simulation technique applicable to interfacial

electrochemistry the ESM-RISM method.

In the ESM-RISM method, we need to solve

the Laue represented Poisson and RISM equa-

tions.

{∂2
z − g2‖}V (g‖, z) = −4πρ(g‖, z), (1)

hγ(g‖, z) =
∑

α

∫
dz′cα(g‖, z

′)

×χαγ(g‖, |z − z′|), (2)

where g‖, g‖, ρ, h, c, χ, α, and γ represent, re-

spectively, a wave vector parallel to the inter-

face, the absolute value of g‖, the total charge

density, the total correlation function, the di-

rect correlation function, the solution suscepti-

bility, the atomic sites of implicit and explicit

solutions. These two equations are related

through the electrostatic potential V (g‖, z) [1].

In the first implementation of ESM-RISM, we

used a common z mesh points for both Eqs. (1)

and (2). Figure 1(a) shows the schematic illus-

tration of the z mesh in the calculation cell.

Since the mesh points along the z direction

are common, the electrostatic potential can be

easily shared in the equations, and this model

is relevant for the thin electric double layer

(EDL) system. However, we need to solve

the RISM equation in a wide range of solu-

tion regions at low electrolyte concentrations

because the EDL becomes thicker according to

the Debye-Hückel theory. In this situation, it

is more versatile to be able to solve the Eqs. (1)

and (2) with different mesh spacing and differ-

ent unit cell along z direction, LDFT
z and LRISM

z

(see Fig. 1(c)). Thus we modify our ESM-

RISM code from the original common mesh to

an individual one.

To accomplish the goal, we need to map an

arbitrary function f on the common mesh onto

f̃ on the individual mesh. As seen in the fig-

ure. 1(d), we employ the Fourier interpolation
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Figure 1: Schematic illustrations of a calculation cell. The z-mesh points used in DFT and RISM

calculations for (a) a common mesh with same cell sizes along z-direction (LDFT
z = LRISM

z ), (b)

a common mesh with different cell sizes, and (c) an individual mesh with different cell size. The

horizontal red and blue lines with grids represent the unit cell size along the z-direction for the

DFT and RISM calculations. Conceptually, the zyx indicates a grid point of x (= long or short)

unit cell for y (= DFT or RISM) calculation. (d) The mapping sequence of an arbitrary function

f(gdensecut ) to f̃(gsparcecut ), where F and F−1 are the forward and backward Fourier transform,

respectively. (e) Schematic illustration of cutoff radii in the reciprocal space (gdensecut and gsparsecut ).

The “sparse” in (c) means a sparse mesh with a small cutoff radius, gsparcecut .

scheme. First, we did the backward Fourier

transform from f(gdensecut ) to f(zDFT
short), and then

we map the f in the DFT cell onto the f̃ in

the RISM cell by the following condition:

f̃(z) =

{
f(z) z = zDFT

short,

0 z #= zDFT
short.

(3)

After the forward Fourier transformation, the

dense FFT grids gdensecut is reduced to the sparse

FFT grids gsparsecut (see Fig. 1(e)). In the pro-

gram, we first apply the mapping sequence

from ρ to ρ̃. Secondly, by solving the Eq. (1)

with ρ̃, the electrostatic potential in the RISM

cell can include the contribution from the DFT

charge. Finally, we solve the RISM equation

Eq. (2) on the sparse grids zRISM,sparse
long .

After finishing the code development, we

checked the validity of our implementation by

comparing the total energy and the force act-

ing on atoms between the two calculations with

Figs. 1 (a) and (c) configurations.
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